unsloth使用教程-grpo算法为例
1.使用unsloth 进行强化学习训练grpo2.训练后加载推理3. 训练后模型+lora 合并。
·
一、定义
1.使用unsloth 进行强化学习训练grpo
2.训练后加载推理
3. 训练后模型+lora 合并
二、实现
1.使用unsloth 进行强化学习训练grpo
#coding="utf8"
from unsloth import FastLanguageModel, PatchFastRL
PatchFastRL("GRPO", FastLanguageModel)
import re
from datasets import load_dataset, Dataset
#加载模型
from unsloth import is_bfloat16_supported
import torch
max_seq_length = 512 # Can increase for longer reasoning traces
lora_rank = 32 # Larger rank = smarter, but slower
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "/home/grpo_test/Qwen2.5-0.5B-Instruct",
max_seq_length = max_seq_length,
load_in_4bit = True, # False for LoRA 16bit
fast_inference = True, # Enable vLLM fast inference
max_lora_rank = lora_rank,
gpu_memory_utilization = 0.6, # Reduce if out of memory
)
model = FastLanguageModel.get_peft_model(
model,
r = lora_rank, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
target_modules = [
"q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",
], # Remove QKVO if out of memory
lora_alpha = lora_rank,
use_gradient_checkpointing = "unsloth", # Enable long context finetuning
random_state = 3407,
)
print(model)
#加载数据集
#######################################################################################
# Load and prep dataset
SYSTEM_PROMPT = """
Respond in the following format:
<reasoning>
...
</reasoning>
<answer>
...
</answer>
"""
XML_COT_FORMAT = """\
<reasoning>
{reasoning}
</reasoning>
<answer>
{answer}
</answer>
"""
def extract_xml_answer(text: str) -> str:
answer = text.split("<answer>")[-1]
answer = answer.split("</answer>")[0]
return answer.strip()
def extract_hash_answer(text: str) -> str | None:
if "####" not in text:
return None
return text.split("####")[1].strip()
# uncomment middle messages for 1-shot prompting
def get_gsm8k_questions(split = "train") -> Dataset:
data = load_dataset('/home/grpo_test/openaigsm8k', 'main').select(range(1000))[split] # type: ignore
data = data.map(lambda x: { # type: ignore
'prompt': [
{'role': 'system', 'content': SYSTEM_PROMPT},
{'role': 'user', 'content': x['question']}
],
'answer': extract_hash_answer(x['answer'])
}) # type: ignore
return data # type: ignore
dataset = get_gsm8k_questions()
#定义奖励规则
# Reward functions
def correctness_reward_func(prompts, completions, answer, **kwargs) -> list[float]:
responses = [completion[0]['content'] for completion in completions]
q = prompts[0][-1]['content']
extracted_responses = [extract_xml_answer(r) for r in responses]
print('-'*20, f"Question:\n{q}", f"\nAnswer:\n{answer[0]}", f"\nResponse:\n{responses[0]}", f"\nExtracted:\n{extracted_responses[0]}")
return [2.0 if r == a else 0.0 for r, a in zip(extracted_responses, answer)]
def int_reward_func(completions, **kwargs) -> list[float]:
responses = [completion[0]['content'] for completion in completions]
extracted_responses = [extract_xml_answer(r) for r in responses]
return [0.5 if r.isdigit() else 0.0 for r in extracted_responses]
def strict_format_reward_func(completions, **kwargs) -> list[float]:
"""Reward function that checks if the completion has a specific format."""
pattern = r"^<reasoning>\n.*?\n</reasoning>\n<answer>\n.*?\n</answer>\n$"
responses = [completion[0]["content"] for completion in completions]
matches = [re.match(pattern, r) for r in responses]
return [0.5 if match else 0.0 for match in matches]
def soft_format_reward_func(completions, **kwargs) -> list[float]:
"""Reward function that checks if the completion has a specific format."""
pattern = r"<reasoning>.*?</reasoning>\s*<answer>.*?</answer>"
responses = [completion[0]["content"] for completion in completions]
matches = [re.match(pattern, r) for r in responses]
return [0.5 if match else 0.0 for match in matches]
def count_xml(text) -> float:
count = 0.0
if text.count("<reasoning>\n") == 1:
count += 0.125
if text.count("\n</reasoning>\n") == 1:
count += 0.125
if text.count("\n<answer>\n") == 1:
count += 0.125
count -= len(text.split("\n</answer>\n")[-1])*0.001
if text.count("\n</answer>") == 1:
count += 0.125
count -= (len(text.split("\n</answer>")[-1]) - 1)*0.001
return count
def xmlcount_reward_func(completions, **kwargs) -> list[float]:
contents = [completion[0]["content"] for completion in completions]
return [count_xml(c) for c in contents]
if __name__ == "__main__":
from transformers import set_seed
set_seed(3407)
#训练模型
from trl import GRPOConfig, GRPOTrainer
training_args = GRPOConfig(
use_vllm = True, # use vLLM for fast inference!
learning_rate = 5e-6,
adam_beta1 = 0.9,
adam_beta2 = 0.99,
weight_decay = 0.1,
warmup_ratio = 0.1,
lr_scheduler_type = "cosine",
optim = "paged_adamw_8bit",
logging_steps = 1,
bf16 = is_bfloat16_supported(),
fp16 = not is_bfloat16_supported(),
per_device_train_batch_size = 1,
gradient_accumulation_steps = 1, # Increase to 4 for smoother training
num_generations = 6, # Decrease if out of memory
max_prompt_length = 256,
max_completion_length = 200,
# num_train_epochs = 1, # Set to 1 for a full training run
max_steps = 250,
save_steps = 250,
max_grad_norm = 0.1,
report_to = "none", # Can use Weights & Biases
output_dir = "outputs",
)
trainer = GRPOTrainer(
model = model,
processing_class = tokenizer,
reward_funcs = [
xmlcount_reward_func,
soft_format_reward_func,
strict_format_reward_func,
int_reward_func,
correctness_reward_func,
],
args = training_args,
train_dataset = dataset,
)
trainer.train()
model.save_pretrained("lora_model") # Local saving
tokenizer.save_pretrained("lora_model")
2.训练后加载推理
- 加载方式一: 以unsloth 原生接口加载,并进行推理, 该接口可以加载lora、qlora、非训练模型路径
from unsloth import FastLanguageModel
from unsloth import is_bfloat16_supported
import torch
max_seq_length = 512 # Can increase for longer reasoning traces
lora_rank = 32 # Larger rank = smarter, but slower
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "outputs/checkpoint-250",
max_seq_length = max_seq_length,
load_in_4bit = True, # False for LoRA 16bit
fast_inference = True, # Enable vLLM fast inference
max_lora_rank = lora_rank,
gpu_memory_utilization = 0.6, # Reduce if out of memory
)
FastLanguageModel.for_inference(model)
print(model)
SYSTEM_PROMPT = """
Respond in the following format:
<reasoning>
...
</reasoning>
<answer>
...
</answer>
"""
text = tokenizer.apply_chat_template([
{"role" : "user", "content" : "Calculate pi."},
], tokenize = False, add_generation_prompt = True)
inputs = tokenizer(
[
text,
], return_tensors = "pt").to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
outputs = model.generate(**inputs, max_new_tokens = 500)
print(outputs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0]))
- 以transformer 原生方式加载推理
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
model = AutoPeftModelForCausalLM.from_pretrained(
"outputs/checkpoint-250", # YOUR MODEL YOU USED FOR TRAINING
load_in_4bit = True,
)
tokenizer = AutoTokenizer.from_pretrained("outputs/checkpoint-250")
SYSTEM_PROMPT = """
Respond in the following format:
<reasoning>
...
</reasoning>
<answer>
...
</answer>
"""
text = tokenizer.apply_chat_template([
{"role" : "user", "content" : "Calculate pi."},
], tokenize = False, add_generation_prompt = True)
inputs = tokenizer(
[
text,
], return_tensors = "pt").to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
outputs = model.generate(**inputs, max_new_tokens = 128)
print(outputs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0]))
3.vllm + base Model+ lora
import torch
max_seq_length = 512 # Can increase for longer reasoning traces
lora_rank = 32 # Larger rank = smarter, but slower
from unsloth import FastLanguageModel
from unsloth import is_bfloat16_supported
import torch
max_seq_length = 512 # Can increase for longer reasoning traces
lora_rank = 32 # Larger rank = smarter, but slower
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "outputs/checkpoint-250",
max_seq_length = max_seq_length,
load_in_4bit = True, # False for LoRA 16bit
fast_inference = True, # Enable vLLM fast inference
max_lora_rank = lora_rank,
gpu_memory_utilization = 0.6, # Reduce if out of memory
)
model = FastLanguageModel.get_peft_model(
model,
r = lora_rank, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
target_modules = [
"q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",
], # Remove QKVO if out of memory
lora_alpha = lora_rank,
use_gradient_checkpointing = "unsloth", # Enable long context finetuning
random_state = 3407,
)
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
SYSTEM_PROMPT = """
Respond in the following format:
<reasoning>
...
</reasoning>
<answer>
...
</answer>
"""
text = tokenizer.apply_chat_template([
{"role" : "system", "content" : SYSTEM_PROMPT},
{"role" : "user", "content" : "How many r's are in strawberry?"},
], tokenize = False, add_generation_prompt = True)
from vllm import SamplingParams
sampling_params = SamplingParams(
temperature = 0.8,
top_p = 0.95,
max_tokens = 1024,
)
output = model.fast_generate(
text,
sampling_params = sampling_params,
lora_request = model.load_lora("grpo_saved_lora"), # Load LoRA weights, 动态加载
)[0].outputs[0].text
print(output)
- 训练后模型+lora 合并 与加载预测
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
model = AutoPeftModelForCausalLM.from_pretrained(
"outputs/checkpoint-250", # YOUR MODEL YOU USED FOR TRAINING
load_in_4bit = True,
)
tokenizer = AutoTokenizer.from_pretrained("outputs/checkpoint-250")
model = model.merge_and_unload()
model.save_pretrained("merged-model")
tokenizer.save_pretrained("merged-model")
更多推荐


所有评论(0)